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Abstract

The phase advances of the arc cells of storage rings are
traditionally chosen to be simple fractions ofπ in order to
take advantage of second order achromats they constitute.

For the LHC, such a choice is not relevant because of the
existence of high order systematic multipole components in
the main dipoles. In this case it is better to choose the phase
advances to cancel the driving term for the largest possi-
ble number of non–linear resonances, which is straightfor-
ward for an ensemble of identical cells. This can also be
achieved for an actual LHC arc featuring dispersion sup-
pressors. The associated improvement of the dynamic aper-
ture is shown in this paper.

1 INTRODUCTION

The working point in the tune diagram is usually deter-
mined by a systematic scanning. The SPEAR upgrade
projects is a good example [1].

A more subtle approach consists of building a machine
from blocs which do not contribute to the excitation of
non–linear resonances. The details are explained in [2] and
the application to the LHC is shown in section 2 below.

In order to have a basis for comparison, several LHC op-
tics have been constructed. Their characteristics are given
in section 3.

In order to help the understanding the resonance
strengths have been computed by Normal Form [4]. Lastly,
tracking results, performed with SIXTRACK [3], are pre-
sented for these optics.

2 A “RESONANCE FREE” LHC ARC

The main problem associated with multipole errors in the
LHC arises from the arc dipoles. These dipoles are con-
structed by several different firms. Each fabrication line
may produce dipoles with different systematic multipole
errors. As the number of fabrication lines is comparable
with the number of LHC arcs, which is eight, the concept
of “systematic multipole per arc” comes naturally into the
game. Such a component takes a constant value over a
given arc and this value varies randomly from arc to arc.

In this context it is attractive to design the arc optics such
that it does not contribute to the excitation of low order
resonances [2]. To this end both cell phase advances have
to be set to the valuesk1 · 2π/Nc in the horizontal plane
andk2 ·2π/Nc in the vertical plane. Under these conditions

only those resonances are excited which satisfy,

nxk1 + nyk2 = k3Nc, (1)

wherek3 is any integer.
Nc is determined for the LHC as follows. Each arc is

composed of 23 FODO cells plus one dispersion suppres-
sor at each end. Each cell is composed of two quadrupoles
and six dipoles. The dispersion suppressors consist of four
quadrupoles and eight dipoles. Thus, a dispersion suppres-
sor is a little longer than one cell, it has a larger phase ad-
vance and it contains one third more dipoles. Even though,
each dispersion suppressor is taken as one cell. The number
of cells is therefore 25 (23 cells plus 2 dispersion suppres-
sors).

The phase advance of the arc cells must be close to 90◦

because the quadrupole gradient and the aperture of the
vacuum chamber have been designed in view of these phase
advances. This leaves two possibilities for (k1, k2): (7,6)
or (6,5). Nevertheless there remain systematically excited
single resonances satisfying equation (1). Below order 10
they are: 4,8,9 and 5,6,9 for these two cases respectively.
The pair (7,6) has been kept for tracking studies due to its
lowerβ functions.

3 LHC OPTICS STUDIED

In order to have a relevant basis of comparison, several op-
tics have been constructed:

1. A simple model with 25 FODO cells and at each end
a transfer matrix to simulate a LHC arc

2. An optics with a tune–split of 5 (Qx=64.28,
Qy=59.31). A tune–split of 5 has been chosen as the
nominal LHC lattice version 6.

3. An optics which minimises some adverse effects of
non–linearities for multipole components which have
the same value in all dipoles Qx=65.28, Qy=58.31 [5].
Such an optics is likely not to bring any improvement
in the case where the systematic by arcs dominate.

4. A “resonance free” lattice with the phase advances
per cell: mux,c = 7

25 × 2π andmuy,c = 6
25 × 2π.

Qx=68.28, Qy=59.31. The phase advance in the cells
has been set and the insertions have been rematched
using the minimum number of variable parameters.
Then the tunes have been adjusted by means of IR4
and IR6 to the closest values with the same fractional
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parts as above. For this lattice, the resonances are not
cancelled as they should be for the case of 25 FODO
cells, nevertheless their driving term is substantially
reduced compared with other lattices.

4 RESONANCE COMPUTATION

In order to test the efficiency of the resonance cancella-
tion procedure, the resonance driving terms have been com-
puted by means of the formalism in ref. [4].

At first this has been done for the simple model com-
posed of 25 cells and two insertions for which the reso-
nance driving term is exactly zero. It is found to have a
value smaller by five order of magnitude compared with
the other cases. This shows the validity of the computation
and the consistency between the two approaches, namely
perturbation calculation and map transformation to calcu-
late resonance driving terms.
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Figure 1: Build–up of the driving term of the (1012) sub–
resonance over the length of the LHC. The light gray
(green) curve is associated with the “target error table” [6].
The dark gray (red) curve is obtained with largerb4 anda4

systematic by arc multipole components, respectively 0.35
and 0.555 in units of10−4 and at a reference radius 17mm.
Part (a) Case 2 in section 2.
Part (b) Case 4 in section 2.

The build–up of the resonance driving term along the
LHC lattice is shown in figure 1(a) for the optics with a
tune–split of 5 and in figure 1(b) for the “resonance free”
lattice respectively. The multipole errors introduced in the

lattice are: systematic per arc and random. The error tables
can be found in ref. [6]. The resonance cancellation per
octant appears quite clearly in figure 1(b): the value of the
driving term at the end of the lattice is the same both with
and without realistic octupole components.

5 DYNAMIC APERTURE

For the simple model, trajectories have been tracked over
1000 turns without synchrotron oscillations. The maxi-
mum initial amplitudes with zero slopes for which the tra-
jectory remains stable are shown on figure 2.

For realistic lattices (case 2, 3 and 4 in section 2), tra-
jectories have been tracked for 105 turns with two sets
of initial conditions. One set has identical coordinates
in both planes, the other set has an amplitude ratio of
tan(15◦)=0.27, the two trajectory slopes are zero. Bothβ–
functions have the value of 18m at the starting point. The
beam emittance is 3.75nm at 1σ. Synchrotron oscillations
with an initial relative momentum deviation of 0.00075 are
included. 60 different realizations of the multipole errors
have been studied in order to achieve a 95% confidence
level of the minimum dynamic aperture.
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Figure 2: 1’000 turn dynamic aperture of the LHC model
for three phase advances per cell: LHC lattice version 5,
case 3 and case 4 of section 2. The dynamic aperture is
defined as the ensemble of points in the{x,y} plane for
which the trajectories starting with the initial coordinates x
and y and zero slopes at the beginning of the lattice where
bothα’s are zero, are stable over 1000 turns. Both horizon-
tal and verticalβ functions are equal to 1m at the starting
point. The multipole errors areb4=0.5,a4=0.5 andb5=1.4
in units of10−4 and at a reference radius 17mm.

The tracking results are shown in table 1. For the “tar-
get error table” (the first three cases) we observe no differ-
ence in the values for the dynamic apertures. When realis-
tic octupole componentsb4 anda4 are introduced the dy-
namic aperture is not changed for quasi horizontal motion
(y0 = 0.27x0). For equal amplitudes (y0 = x0) there is
a 10% reduction of the minimum dynamic aperture for the
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cases 3 and 4 in section 2. This reduction is fully recovered
for the “resonance free” lattice.

Case Realistic y0 = x0 y0 = 0.27x0

b4&a4 min. av. min. av.

3 (V6 nom.) 12.4 14.6 11.3 12.7
4 off 12.4 14.5 11.0 12.8
5 (Res. free) 12.5 14.8 11.3 12.6

3 (V6 nom.) 10.9 13.4 11.1 12.8
4 on 11.3 13.8 11.3 12.9
5 (Res. free) 12.6 14.5 10.8 12.7

Table 1: Minimum and average dynamic aperture in units
of r.m.s. beam size for a series of 60 distributions of er-
rors, both random and systematic per arc. For the first three
cases, the values are taken from the “target error table”.
For the following three cases the errors are the same ex-
cept for the systematic by arc octupole components which
have been set to the more realistic values ofa4=0.555 and
b4=0.35 (in units of10−4 at a reference radius of 17mm)
without compensation. From our current experience, the
dynamic apertures can be overestimated by 0.2 for the av-
erage and 0.5 for the minimum.

In order to observe the beneficial effect of the resonance
suppression the same exercise was repeated with values of
the realisticb4 anda4 components increased threefold. The
efficiency of the “resonance free” lattice appears clearly in
table 2.

From these three sets of tracking results we conclude that
the dynamic aperture of the “target error table” is far from
being dominated by low order resonances driven by sys-
tematic multipoles.

Case y0 = x0 y0 = 0.27x0

min. av. min. av.
3 (V6 nom.) 7.7 10.3 7.6 10.8
5 (Res. free) 10.2 13.5 10.3 12.5

Table 2: Minimum and average dynamic aperture in units
of r.m.s. beam size for a series of 60 distributions of er-
rors, both random and systematic per arc. The values are
taken from the “target error table” except the octupole er-
rors which have been set to three times their realistic val-
ues.

In order to check that there is no artifact in the “reso-
nance free” lattice, the dynamic aperture has been eval-
uated for 12 ratios of initial amplitudes. The results are
shown on figure 3. The maximum dynamic apertures (the
two upper curves) are both at the level we expect from the
random components only [7], the resonance suppression
has obviously no effect in this case. The average dynamic
apertures (medium two curves) show an improvement of

some 2σ for all amplitude ratios. The minimum dynamic
apertures (lower two curves) show a sizable improvement
except for quasi vertical motion. This lack of improvement
is probably due to higher order effects.
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Figure 3: Dynamic aperture in the x,y plane for the two
cases of table 2.

6 CONCLUSION

We have demonstrated, for the case of the LHC, that the
dynamic aperture can be increased by a suppression of first
order resonances with a proper choice of the cell phase ad-
vances in the arcs. This is closely associated with the fact
that we expect large systematic per arc multipole compo-
nents to dominate the dynamic aperture.

This optimisation of the cell phase advances provides
a large safety margin against unexpected large systematic
components of the LHC dipoles.
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